AERMOD Version 13350 Low Wind Options: Sensitivity Analysis and Evaluation Update

Study conducted on behalf of:

- API for sensitivity analysis
- Lignite Energy Council for evaluation update

Outline of Presentation

- Purpose and objectives of this study for AERMOD low wind options
- Sensitivity Study Funded by API
 - Model Options Tested
 - Source Types Modeled for Flat and Complex Terrain
 - Results of Sensitivity Analysis
- Evaluation Study Funded by Lignite Energy Council
 - Models and Options Tested
 - Database Tested to Date
 - Results of Evaluation Tests to Date

Purpose and Objectives: Sensitivity Analysis

- Explore the sensitivity of the AERMOD low wind speed options for predicted impacts in both flat and complex terrain
- Tested for a variety of emission sources of interest to the American Petroleum Institute and their members
- 11 different source types were examined, ranging from tall buoyant point sources to low-level fugitive sources
- Examined types of sources significantly affected by use of the low wind options in AERMET and AERMOD
- NO₂ was the pollutant selected → assumed full conversion of NOx to NO₂
- Model setup was based on hypothetical locations, but used input parameters and building downwash (when applicable) from real model applications

A=COM

Model Configurations and Options for Sensitivity Analysis

- AERMET/AERMOD Versions 13350 and 14134
- Three model configurations were run
 - AERMET/AERMOD all default
 - AERMET (Beta u*) / AERMOD (default)
 - 3. AERMET (Beta u*) / AERMOD (LOWWIND2)
- Each model configuration was run for each source in both flat and complex terrain
- Results from AERMOD versions 13350 and 14134 were the same

Model Inputs: Source Types

111000	imputs. Source Types				
		Stack	Stack	Stack	Stack
Source ID	Source Description	Height	Temp	Vel.	Diameter
Source ID	Source Description	(m)	(K)	(m/s)	(m)
FCC	Source 1: a tall buoyant point source indicative of an FCC (fluid catalytic cracking) refinery source (including building downwash)	54.0	561.0	49.1	2.0
FLARE	Source 2: a tall buoyant point source representing a flare (pseudo temp and velocity modeled to conserve buoyancy flux)	75.6	1273.0	20.0	1.1
REGENHTR	Source 3: a tall buoyant point source indicative of a CCR (continuous catalytic regenerative reformer) refinery source (including building downwash)	104.2	450.0	12.2	3.7
GASTURB	Source 4: a buoyant point source indicative of gas turbine at a compressor station (including building downwash)	13.7	777.0	41.6	1.2
DIESENG	Source 5: a short-stack horizontal elease point source indicative of a diesel generator (including building downwash)	9.1	697.0	0.001	0.60
DRILLRIG	Source 6: a buoyant point source indicative of a drill rig (e.g., used at a fracking site, including building downwash)	6.1	665.0	45.0	0.3
LNGTURB	Source 7: a combustion turbine source indicative of drilling or LNG facility operations.	13.7	777.0	30.0	3.0
PNTTANK	Source 8: a non-buoyant point source located on a tank (including downwash)	14.6	ambient	0.001	0.001
COMPRSTA	Source 11: buoyant point source associated with a compressor station at a coal bed methane drilling site (including downwash)	14.3	449.8	22.8	1.8
		Release			Initial
		Height	X-Dim.	Y-Dim.	Sigma-Z
		(m)	(m)	(m)	(m)
AREA	Source 9: a ground-level area source	0.0	50.0	50.0	0.0
		Release	Initial	Initial	
		Height (m)	Sigma-Y (m)	Sigma-Z (m)	
ROADVOL	Source 10: a volume source representing roadway traffic	10.0	14.0	16.0	

Model Inputs: Receptors

Model Inputs: Meteorology

- Two meteorological databases used in the study
- 1. Flat Terrain 2007-2011 from Pascagoula, Mississippi
- 2. Complex Terrain 2008-2012 from Page, Arizona
- Both meteorological databases feature a fairly large percentage of low wind speed hours
 - Winds < 1.5 m/s at least 25% of the time
 - Winds < 2.5 m/s at least 60% of the time
- The location of the hypothetical sources in complex terrain was strategically positioned near (and upwind of) a major terrain feature

AECOM

Flat Terrain Wind Rose and Frequency Distribution

WIND SPEED (m/s) >= 5.50 4.50 - 5.50 3.50 - 4.50 2.50 - 3.50 1.50 - 2.50 0.50 - 1.50

Wind speeds < 2.5 m/s over 60% of the time

Complex Terrain Wind Rose

Model Relative Sensitivity Results: Flat Terrain

AECOM

AERMOD Low Wind Sensitivity – Flat Terrain

- Tall buoyant stacks (FCC, FLARE, REGENHTR) were insensitive to the LW options - max impacts occur during unstable conditions
- Short buoyant stacks with downwash (DRILLRIG, COMPRSTA) insensitive to LW options - max impacts did not occur under light winds
- Short stacks without either momentum or buoyancy with downwash (DIESENG, PNTTANK) and fugitive sources are sensitive to LW options resulting in lower concentrations
 - max impacts occurred under light wind stable conditions
 - beta u* increase mechanical mixing and vertical dispersion
- LNGTURB (short buoyant non-downwashing) source experienced a high wind "side effect" of the LW options
 - max impacts occur under high wind neutral conditions
 - use of beta u* causes higher turbulence and plume touch down closer to the stack
- Low-level sources have peak impacts at low terrain near fenceline in complex terrain case as well

Environment May 2014 Page 11 AECOM

Model Relative Sensitivity Results: Complex Terrain

AERMOD Low Wind Sensitivity – Complex Terrain

- Tall buoyant stacks (FCC, FLARE, REGENHTR) are sensitive to the LW options in complex terrain
 - For default options, max impacts occur under light wind speed stable conditions
 - use of beta u* increases effective wind speed, mechanical mixing, vertical dispersion, and plume rise; reduces predicted concentrations
 - use of LowWind2 also increases lateral dispersion and lower concentrations
- LNGTURB (short, non-downwashing) is sensitive to LW options
 - For default options, max impacts occur under light wind stable conditions
 - use of beta u* increases mechanical mixing height and vertical dispersion
- COMPRSTA (short, downwashing) responds to LW options
 - For default options, max impact occurs under stable conditions (downwash)
 - Lower max impact for beta u* option occurs in downwash during high wind unstable conditions

AECO*M*

Lignite Energy Council Evaluation of AERMOD Low Wind Options for Tall Stack Releases

Terrain Contours for SO₂ Monitors Used in the ND Study

(10-m contour interval)

Preliminary AERMOD Evaluation Results* with Actual Hourly Emissions for North Dakota 4-year Database (07-10)

				AERMET with
	Obs.	AERMOD		beta u*,
	Conc.	14134		AERMOD with
	4-yr Avg	with	AERMET	LOWWIND2
	99th %	default	with beta u*,	with min
	Daily	options:	default	sigma-v =
	Max,	Pre/obs	AERMOD:	0.5 m/s:
Monitor	μg/m³	ratio	Pre/obs ratio	Pre/obs ratio
DGC #12	91.52	1.28	1.28	1.05
DGC #14	95.00	1.45	1.45	1.05
DGC #16	79.58	2.00	2.00	1.58
DGC #17	83.76	2.07	1.49	1.29
Beulah	93.37	1.31	1.31	1.01

^{*} Note: assumes SO₂ background of 10 μg/m³

Conclusions

- This study reports sensitivity and field evaluation results for low wind options in AERMET/AERMOD
- Sensitivity was tested for 11 different source types
- In flat terrain, this option is important for low-level, nonbuoyant source types, and not for tall, buoyant stacks
- In complex terrain, this option is very important for tall, buoyant stack releases
- Low wind speed evaluations are underway for real-world field databases featuring tall, buoyant stacks: ND, Gibson
- For the North Dakota database, low wind options lead to better AERMOD performance, especially for the elevated terrain monitor. SCICHEM does well for this database.